
7AD-A119 145 STANFORD UNIV CA DEPT OF COMPUTER SCIENCE F/A 5/2
THE U.RA STRIKES BACK.U U65/

JUL A2 1 D ULLMAN. AFOSR-80-212

NASIIDSTAN-CS-Al-88l AFOSA TA 82-06a NA

*U f f ~ l C 7



October 19bi Report. No. STAN-CS-81-881

',9 O tOp Zv

i-I The U. R. Strikes Back

by

Jeffrey D. Ullman

rw

o-g e F O- 0
Department of Computer Science

-Stanford University
* Stanford, CA 94305

SJUMi 06

APproed for publi release
0 dstribution unllm=ted.

-5J

. f

~ -- ~.*~**I



SECURITY CASSIFICATION OF THIS PACE (When Data Entered__________________

REPORT DOCUMENTA.TION PAGE BEFORE COPEIGFORM

1. 0 UPOT MUI11%GOVT ACCESSION No. 3. RECIPIENT'$ CATALOG NUMBER

'IOSEiR 82-0648 X 11  i5  _ _ _ _ _ _ _

4. TITLE (atE &"Ust~) S. TYPE OF REPORT & PERIOD Cove otED

THE U.R. STRIKES BACK TECHNICAL

6. PERFORMING ORG. REPORT NUMBER

7. AUTNOR(q) 41. CONTRACT OR GRANT NUMBER(s)

Jeffrey D. Ullman AFOSR-80-0212

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK I

Department of Computer Science AE OKUI UBR

Stanford University PE6llO2F; 2304/A2
Stanford CA 94305 ______________

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Directorate of Mathematical & Information Sciences Jul 1982

Air Force Office of Scientific Research IS. NUMBER Of PAGES

Boli1 F DC 20332 1-14 ___________

IS. MOITORNGAGENCY NAME I ADORESS(II different from, Controlitn 0Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

ISa. DECLASSIFICATION/ DOWNGRADING
SCH EDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. it different from Rope"f)

IS. SUPPLEIMENTARY NOTES

It. KEY WORDS fContinua en rearee aide it necessary end identify by block nuomber)

20. ABSTRACT (Contie en reverse Side It neesary end identify by block number)
In this paper, the authors try to put to rest many of the objections to the

sal relation assumption'. Then, they shall consider some of the arguments pro

DD 9J0N"T 1473 EDITION OP I NO 65 IS OBSOLETE Ur.cqr~

SECURITY CLASSIFICATION Of THIS PAGE ("otn Data Entered)



UNCLSSIFIED
SECURITY CLASSIFiCATION OF T0iS PAC@(When Dome a0o.

ITEM #20, CONTINUED: cases, the problems pointed out are real, but simply serve

to point out that the advantages of the universal relation are not gotten for
free. The authors shall conclude the paper with a description of the algorithm
used to interpret queries .in System/U, and the reasoning behind it.

UNCLASSIFIRD

------------------------------



TIlE U. R. STRIKES BACK
Jeffrey D. Ullmant

Stanford University

ABSTRACT

In this paper, we try to put to rest many of the objections to the universal relation concept that
have appeared in the literature. First, we shall taxonomize the varieties of ideas that are sometimes
called the "universal relation assumption." Then, we consider some of the arguments pro and con.
In some cases, the arguments against were expressed prematurely, and solutions to the problems
they expose have since been found. In other case, the arguments against are simply fallacious. In
still other cases, the problems pointed out are real, but simply serve to point out that the advantages
of the universal relation are not gotten for free. We shall conclude the paper with a description of
the algorithm used to interpret queries in System/U, and the reasoning behind it.

I. The Universal Relation Assumptions

We can identify five different ideas that have at various times and places gone under the name "universal
relation assumption."
1. The idea that all the attributes are initially available for the purpose of arbitrary combination into

relation schemes as we do a database scheme design has been used, for example, in 1B]. The underlying
assumption is that we have done sufficient renaming of attributes that a unique relationship exists
among any set of attributes, and the assumption is occasionally criticised for this reason. Let us call
this version the universal relation scheme (UR Scheme) assumption.

2. There is the notion, which appears to be tacitly present in [C], but which is surely found in [ABU],
that an important criterion to be satisfied by a database scheme is that it possess a lossless join, i.e.,
when a hypothetical universal relation is projected onto the relation schemes, and the projections are
joined, the original universal relation results. Let us call this assumption the universal relation/lossless
join (UR/LJ) assumption. Notice the emphasis on the word "hypothetical" describing the universal
relation connected with the UR/LJ assumption. The UR/LJ assumption does not require that the
universal relation actually exist, or even that it be meaningful. We merely assert that by thinking about
this hypothetical universal relation, one can get some clues as to how the database scheme should be
designed.

3. There is an assumption, in [lILY), e.g., that the database system should strive to maintain a collection
of relations that are the projections of some one universal relation. This assumption, called the Pure
UR assumption, is one that I shall not defend, although the questions it raises are interesting.

4. There is the assumption from [FMU] that the universal relation may be assumed to satisfy a single join
dependency and a collection of functional dependencies. In particular, any multivalued dependencies
that hold will follow logically from the join dependency. There is a lot of power that stems from
this assumption, as we shall see when we get to the question of how System/U interprets queries. In
particular, it provides us with the mechanics to interpret arbitrary queries about the universal relation
as if that relation actually existed. However, I am not willing to defend it categorically. As far as I
would go is to say that with the addition of user-defined maximal objects [MU I] to simulate embedded
multivalued dependencies that do not follow from the join dependency, there is a good chance that
whatever semantics for the UR the user wishes will be definable in these terms. Let us agree to call this
the UR/JD assumption.

5. A strengthening of the UR/JD assumption is that the join dependency that the UR satisfies must be
acyclic in the sense of [FMU]. Call this the Acyclic JD assumption. Among other benefits, there is a
strong sense, described in [MU2], in which an acyclic join dependency implies a unique interpretation
of queries over the universal relation. It appears that this assumption is too strong to hold in general,
although by renaming attributes that are used in two different senses, it becomes possible to make the
structure acyclic in more instances than detractors might imply. Further, when the UR structure is

I Work partially supported by AFOSR grant 80-0212 In accordance with NSF agreement IST-80-21358 and by NSF grant
MCS-60-12107.



not cyclic, it is possible to construct a collection of acyclic maximal objects that provide most of the
benefit of the Acyclic JD assumption at a penalty of making it more difficult to express certain queries
than it would be under the UR/JD assumption.

I. The Case for the Universal Relation View

Before considering in detail the criticisms of the various universal relation assumptions, let us review why
the author believes the concept worth considering in the first place. The merit of the concept is that it
allows the user to query a database as if there were a single relation. This relation may have nulls in certain
components of certain tuples, and these nulls should be marked, that is, all nulls are different, unless equality
follows from a given functional dependency. For example, if we don't know Jones' address then there is a
symbol that stands for "the address of Jones" in every tuple of the universal relation in which that address
should logically appear, and in no others. Remember that this universal relation doesn't actually exist,
except in the user's mind, so the nulls may not appear in the actual database.

The purpose of allowing the user to see the database as a single relation is that he is thus relieved of
the need to learn about many details of the database structure.

Example 1: Suppose we have attributes E (employee), M (manager), and D (',epartment). The user should
be able to say something like

retrieve(D)
where E ='Jones'

without concern for whether there is a single relation with scheme EDM, or two relations ED and DM, or
even EM and DM. 0

Let us not infer from Example I that no knowledge of the database's semantics is required of the user.
It is a matter or taste whether understanding concepts like "employee" and "department" and their expected
relationship is much easier on the user than understanding what an ED relation means. I think there is
"nme gain in intuition to be had by the universal relation viewpoint, and surely, many queries are easier to
express in this way than in a query language that deals with individual relations.

There is more empirical evidence that the universal relation user view justifies the attention given to
the concept.
1. There has been a history of success in a variety of database applications using Brian Kernighan's

systern/q at Bell Laboratories [A]. This system supports a universal relation by means of a rel file,
which is a list of joins that could be taken if the query requires it; the first join on the list that covers all
the needed attributes is taken. If there is no such join on the list, the join of all the relations is taken.

2. A variety of natural language systems, such as (C*], [DSK], and [Mo], tacitly use the universal relation
as a user view. Indeed it is hard to see how a natural language system could reliably use anything else,
although certain words could, and are, used to infer that certain relations are being talked about.
Let us therefore take as a point of departure that there is soni utility in considering a system that

supports the universal relation as a user view. We are not saying that every database should be implemented
in this way, or even that it could; we just contend that there is enough of a chance that the concept will be
useful in a given context, and enough benefit to the user if it is, that the approach should be considered.

If we assume the universal relation as a user view, then we must make the UR/LJ assumption when we
design the actual database. The reason is that if we do not have a lossless join for our database scheme,
then the database will not represent a unique universal relation [Al3U], which is strong evidence that the

TIV database is not adequate for the task we have assigned it. We also must make the URl/JD :.sumption; the
DTIC T justification is given in [FMU). We cannot assume that the join dependency we get wil: be "interesting"
Uw~n, o though. The assumption that it usually has a great deal of structure, that is, many terms of a few attributes
Ju. I. each, is a matter of belief. Obviously, we have also made the UR Scheme assumption, but the other two

. ...__ - - assumptions, the Pure UR and Acyclic JD assumptions, have not been made.

Distrhbu M[. Attacks on the Universal Relation Assumptions

Avatla'-. Let uis now con.kider a nonexhaustive list of the arguments that have been used against one or more or these
A": assumptions. We maintain that, in a sense, neither the arguments ,or their refutttions are inlortant. The

Dist I : fact that systems using the concept exist and are successful, even in a limited context, is a more powerful
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refutation of the arguments against the universal relation idea than are any convolutions of logic that the
author can provide.

The Pure UR assumption is responsible for certain inadequacies or Boyce-Codd normal form.

This viewpoint, from (B0, is an example of a premature attack on the UR concept. The problems mentioned
by 1B] center around the inability of the authors to think of a way to do updates to universal relations in
the presence of null values. This issue is certainly important if we are to support the universal relation as a
user view, and (BC] is quite correct in pointing out that a problem, not completely resolved today, exists.

Unfortunately, in analyzing the problem, the authors use only a single null value, and make an unfounded
assumption that when inserting, a tuple that is more defined than another causes deletion of the less defined
tuple. In contrast, at the same time [BG] was being written, works such as [KU] and (Ma] were developing
a semantics or nulls that assumed all nulls were different and could be made equal only if it followed from
given dependencies. One error [BC, p. 2531 makes is assuming that

"The correct action apparently is to replace <null, null, g> by <v, 14, g> [which is another tuple
in the relation being talked about]."

in a situation where the third component does not functionally determine either of the other components.
Their "correct action" is incorrect because there is no logical justification for why the first null equals v or
the second equals 14.

Another problem of [BC] concerned deletions. The authors did not have available to them the deletion
strategy of [Sc], which replaces a deleted tuple t by all tuples that have the components of t in proper subsets
of the nonnull components of t, and nulls elsewhere (there is also the constraint that the nonnull components
must be an "object" in the sense of [Sc], i.e., have meaning as a unit). Indeed, not all deletions are permitted
by [Sc], on the grounds that certain ones do not make sense, but his theory is consistent, and it does explain
away many of the objections of [BC].

Incidentally, I believe that the problems with BCNF arc not caused by the universal relation assumption
in any form. Rather the problem is that the violating dependencies are observations that follow from the
"physics" of the situation, but contribute nothing to the database structure. They should simply be ignored.

The work of JBG] does point out the need for a consistent theory of updates fr a universal relation
system. It is probably not completely satisfactory to do, as system/q does, all updates as processes on files
ftparate from the query system itself. However, the works cited on semantics of nulls do provide a reasonable
theory of updates for universal relations. Work on the issues remains to be done, and it is an important
open question to find the limits on our ability to update universal relations in a meaningful fashion.

Because attribute splitting is necessary to have the UR Scheme assumption, attribute names will in effect
have their relation attached to them anyway.

This view is expressed by [Ke], for example. It is true that we might like to use NAME for the names of
employees, customers, and suppliers, and the UR Scheme assumption forces us to use E _ NAME, C_ NAME,
and S _ NAME, for example, and it is also true that this usage is not an improvement over something like
EMPS.NAME, CUST.NAME.and SUPS.NAME.

However, the assumption that every attribute, or even most attributes, must be modified this way does
not seem to be borne out in practic.±. The criticism seems to make the underlying assumption that unless
a new methodology is always better than the old, it is or no use at all. Furthermore, the criticism misses
the point in assuming that the only thing the universal relation idea is arter is a short way of referring to
attributes. Far more important than this is the transparency of connections in the database. I don't mind
admitting that the name I am talking about is a customer's name when I write

retrieve(BILLS)
where CNAME-'Jones'

if I can I spared the burden or explaining to the system that customers are connected to bills by looking
up the customer's credit card number in one relation, finding the sales slips with that ituinber on them in
another relation, and then finding the invoices referring to each of those sales in a third relation.

3
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ADD QUANTITY PRICE

Fig. 1. The HVFC Database.

The UR/LJ assumption is nothing more than defining a view-one that is the natural join of all the relations.

There is an important difference concerning the way querWe are interpreted. We shall say more about query
interpretation in Section V, but for the moment, let us suggest what the difference is with a simple example.

Example 2: In Fig. 1 we see the hypergrapb representation of the objects (minimal, logically connected sets of
attributes) in the Happy Valley Food Coop example from IU]. The relations of the database would probably
be supersets of some of these objects. For example, MEMBER, ADDR, and BALANCE would probably be
grouped in one relatiu., ORDER#, QUANTITY, ITEM, and MEMBER in another, SUPPLIER and SADDR
in one, and SUPPLIER, ITEM, and PRICE in a fourth.

We could define a view that was the natural join of these four relations and make ql.eies about this
view. However, consider a query like

retreve(ADDR)
where MEMBER='Robin'

If, say, Robin had placed no orders, or he had placed orders, but not for items that had suppliers at the
moment, the natural join view would have no tuples with MEMBER='Robin', and we would get no address
in rcs,)onse.

however, if we use the System/U interpretation of queries, from Section V, we discover that all but the
MEMBER-ADDR object is superfluous, and we interpret the query as the obvious one on the MEMBER-
ADDR-BALANCE relation. The diTerence is that if we define the natural join view, a standard system is
required to use strong equivalence in simplifying the query, meaning two expressions are considered equivalent
if and only if they produce the same answer for arbitrary relations. Since missing tuples, such as no orders
for Robin, make the selection and projection on the view and on the single relation different, a standard
system cannot optimize this query. On the other hand, System/U makes the Pure UR assumption when
optimizing queries, that is, it uses the weak equivalence criterion of JASUI]. The two formulations of the
query (one on the natural join, the other on the MEMBER-ADDR-BALANCE relation only) are weakly
equivalent, so System/U produces the intuitively correct answer. 

We claim the System/U answer is more likely to be correct than the answer that would be obtained from
the view, because if we ask only about Robin's address we probably don't care about any orders he placed.4
We should emphasize that the use by System/U of the Pure UR assumption for query optimization is in a
sense a "kludge." The reader .must judge if the results, especially the use of weak equivalence to optimize
queries, justify the assumption. The reason we believe it justifiable is that dangling tuples, even though we
admit they exist in typical physical relations, should have no part in the answer if the query doesn't really
need their relation. Thus, the dcscrepancies between what would happen if the relations were the projection
of a universal telation and what happens in fact, makes no difference in the intuitively correct answer.

The Acyclic JD assumption fails to meet the intuitive criteria for absence of cycles.

This claim, expressed in JAP], appears to depend on identifying two hypergraphs that we do not consider
interchangeable. In Fig. 2 we see the banking example from JFMU], and in Fig. 3, we see what happens
when (APJ redefines the objects, replacing the f)ANK-ACCT and ACCT-CUST objects by their union and

t If we do core, we can force the order number to be considered by adding a term like ORI)ER#-ORDER# to the where-
dauas.
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Fig. 2. The banking example.

Fig. S. The banking example with different objects.

doing the same thing with LOAN. Figure 3 is acyclic in the sense of [FMU], as it should be, because if the
hypergraph were drawn differently, as in Fig. 4, the "hole" disappears.

lowever, even if that were not the case, LAPI is wrong in assuming that the hypergraphs of Figs. 2
and 3 are related. if one consults (FMUJ for the way hypergraphs are related to our assumptions about the
real world, we see the difference between the two figures. In Fig. 2, customers are related to banks through
accounts and loans. If two customers share an account at Bank of America, then both are related to Bank
of America. However, Fig. 3 presents a different view of the real world. It says that BANK-ACCT-CUST is
a fundamental relationship, so two customers can share an account at two different banks, and each will be
related to only one of the banks. Now you can guess which the author thinks is the real "real world," but
which is correct is irrelevant; what is important is that they are different.

There is another issue raised by [AP] when they justify their zlaim that Fig. 3 is "cyclic" by pointing
to the definition of an acyclic Bachmann diagram in IL]. It is well known [FMU] that the two notions of
acyclicity are different. In addition to the remarkable properties known for acyclicity in the [FMUJ sense, as
enumerated in I[3], there is a very practical justification for using the (FMU] definition in the Acyclic ID
asumption. If we minimise a query about an acyclic universal relation scheme, the resulting set of objects
to be joined should in some sense lie between the attributes mentioned by the query. The objects in the join
should also include all those that lie on the minimal paths connecting the attributes of the query. In jMU2)
a result of this nature is shown to apply to exactly the acyclic hypergraphs isi the [FMUI sense.

Interestingly, [Y) shows a stronger result about the connections in those hypergraphs that are acyclic
Bachmann diagrams, but it is questionable whether we need the extra strength; that is, the connections
obtained in 1MU2) seem adequately strong and unique. Again, the matter of which definition of "acyclic"
you prefer is one of aste, but one should not confuse the two notions. In fact, IF] discusses three distinct
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Fig. 4. View of Fig. 3 showing acyclicity.

notions of acyclicity, including the two mentioned here, and compares their vitues.

The acyclic JD assumption is unreasonable because most real world databases have an inherently cyclic
structure.

This viewpoint is also from (AP). I'm not sure whether I believe that or not. Surely the ability to split
attributes helps us turn cyclic structures into acyclic ones, but the cost is often high-simple queries must be
circumlocuted, by using an equijoin to connect the two formerly identical attributes. However, splitting is
only one option. The maximal objects concept from IviUl] can be used to identify the acyclic substructures
of a cyclic one and to allow navigation through the acyclic structures automatically.t The only time one
is forced to use equijoins to connect seemingly identical items is when one's query jumps among acyclic
structures. But it is exactly at these times that the paths connecting attributes become nonunique, and the
extra specification of path is essential.

Example 3: In Fig. 5 we see the example from [AP], which they attribute to [Mc), of a "real world." That
entity-relationship diagram is translated into objects in Fig. 6. The objects have been numbered for reference,
and the functional dependencies implied by the many-one relationships of Fig. 5 have been shown by arrows.
Since all objects are of size two, the ones that are not functional dependencies are indicated by lines rather
than ovals as in the usual hypergraph representation. Certain of the one-one relationships that appear to be
"isa," or subset relationships, have been shown as functional dependencies from the subset to the superset
only. This treatment of "isa" simplifies the construction of maximal objects and adapts a suggestion of C.
Becri that "isa" be followed only from subset to superset when constructing maximal objects. It is not,
however, e;sential for the point to be made. We have also assumed that the relationship between sales and
customers is really the composition of the relationships from sales to orders to customers. We have thus
eliminated one of the cycles present in Fig. 5, but this elimination is not essential in what follows.

If we iuild maximal objects as suggested in (MUIl, by starting with single objects and adjoining
additional objects if the lossless join of that object with what is already included follows from the functional
dependencies given or from those multivalued dependencies that follow from the given join dependency (there
are no useful dependencies in this category for this example), then we get the following five maximal objects.

X3 = (1,2,3,4,6,7,S)
X2 = {5,8,9, 10,11,12)
X3 - (8,0,10,13,15,18)
A4 - {8,0.10,14,18,17}
M s=:{,o,l0,19,20}

These can be constructed starting with objects 4, 5, 18, 16, and 19, respectively.
As an example of the power inherent in this view of the database, we could answer a request from a

customer to verify the deposit of his check by a query like

t Depending om which of several rules are used to construct maximal objects, they may or may not be guaranteed to bc acyclc..
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example. 0

There is no way for the user of a universaJ relation system to know whether the answer to his query is the
one he expected.

The technique of having the system paraphrase the query, the way many natural language systems do,
would probably be of some help here. However, the fallacy in leveling this charge at the universal relation
concept is not that no problem exists; rather, the problem is not restricted to universal relation systems.
For example, [OW] reports an experiment with teaching college students to use relational query languages,
in which after training, they still had error rates like one out of three in expressing queries that involved
joins. If you believe that is typical of naive, but presumsably intelligent users, then it is hard to assert that
ordinary database systems always give the user what he expected. In fact, since the study or [GW] implies

that queries needing joins were considerably harder for students to get right than were queries involving only

one relation, there is hope that a universal relation system would give them much lower error rates than
ordinary systems.

Universal relation systems fail to Lake into account all possible connections among the attributes involved in

a query.

This point has figured into the thinking of lAP], where they discuss the "relationship uniqueness" problem,

------ ---- -



and is implicit in the approach of [Sal, Sa2] in dealing with universal rclations. While there are arguments on
both sides, my own point of view is that all relationships are not equally plausible as query interpretations.
I conjecture that a carefully designed system can deduce the user's intent, from among possible connections,
with high enough accuracy to make the system workable. As we remarked in the subsection above, ordinary
systems are not guaranteed to "interpretV queries correctly for the simple reason that the complexities of
ordinary query languages make user errors frequent.

The following is an example of a situation where making distinctions between connections seems quite
reasonable. In Fig. 2, a query like

-retrieve(LOAN)
where CUST='Jones'

is most likely to be asking for the information in the CUST-LOAN object, not for the connection between
CUST and LOAN that goes through ACCT and BANK, to give those loans made by a bank at which Jones
has an account. The query language should allow the latter connection to be specified if the user desires it,
but it appears to the author quite reasonable to take the simpler connection as a default in the absence of
a specification to the contrary.

The process of selecting interpretations for queries over a universal relation is still some art and some
science. We feel, however, that progress has been made, and there is hope for more progress in the future.

IV. The System/U Data Definition Language

Now let us sketch the design of System/U and see how the ideas discussed above can be made to work in
practice. The design of the system uses ideas contributed by H. Korth and G. Kuper, as well as those of the
author. Earlier descriptions appear in [KU, Ko]. The data definition language inLiudes the following kinds
of declarations.
1. Attributes and their data types.
2. Relation names and their schemes (sets of attributes).
3. Functional dependencies.
4. Objects, which are sets of attributes, and the relation from which each object is taken, with possible

attribute renaming allowed.
5. Maximal objects, which are sets of objects.

Points (4) and (5) require some elaboration. Objects are the edges of the hypergraph that definz the join
dependency assumed to hold in the universal relation. They are, intuitively, the minimal sets of attributes
that have collective meaning, and the term is taken from [Sc], where the concept was first developed. For
example, in terms of the entity-relationship model [Che], an attribute or attributes that form a key for an
entity set will be found in one object for each of the properties of that entity set; the object includes only
the key and the one property. Relationships arc represented by objects consisting of the keys for the related
entity sets.

Each object is assumed to be contained in one relation, perhaps properly contained if the relation is
unnormalized, or if the relation consists of a key and many properties of that key. We allow renaming of
attributes so that the same relation can be used for many objects that are effectively identical.

Example 4: A genealogy can be based on a single relation CP, the child-par it relationahip. We might declare
attributes PERSON, PARENT, GRANDPARENT, AND GGPARENT, with objects PERSON-PARENT,
PARENT-GRANDPARENT, AND GRANDPARENT-GCPARENT, each defined to be the CP relation with
the obvious correspondence of attributes. We could then ask

retrieve(G C PARENT)
where PERSON='Jones'

and find the great grandparents of Jones in the obvious way, taking what the system thinks are natural
joins, but are really equijoins on the CP relation.

As another example, we could make the banking database of Fig. 2 acyclic (a step we do not rec-
commend) by splitting CUST into DEPOSITOR and BORROWER and splitting ADDR into CADDR and
BADDR. We would then use objects ACCT-DEPOSITOR, LOAN-BORROWER, DEI'OSITOR-DADDR, and
BORROWER-BADDR. One problem with this approach (in addition to forcing the user to remember the
unimportant difference between BADDR and DADDR, which is why we do not reccominend the split) is that

gi
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Fig. 7. Maximal objects in the banking example.

we appear to need two relations recording names and addresses, and many of these will be duplicates, when a
customer is both a borrower and depositor. However, we can create one relation of names and addresses and
declare both objects DEPOSITOR-DADDR and BORROWER-BADDR to be this relation, which alleviates
at least one problem. 0

The fifth item above, declaration of maximal objects, also requires some explanation. The system
computes maximal objects itself, using the functional dependencies and multivalued dependencies implied by
the join dependency on the objccts.f However, the user can override the automatic computation by declaring
additional maximal objects. The system then throws away those of the maximal objects it computes that
are subsets or supersets of the declared objects. One important use of this feature is in simulating embedded
multivalued dependencies, which have no place in System/U otherwise.

Example 5: Suppose in the banking example of Fig. 2 we decide that the functional dependencies

ACCT-- BANK, ACCT--*BAL, LOAN-BANK, LOAN--AMT, and CUST--ADDR

hold. Then the two maximal objects shown in Fig. 7 would be constructed.
A query Ike

retrieve(BANK)
where CUST='Jones'

would give the banks at which Jones has either a loan or account, since CUST is connected to BANK in two
different ways through the two maximal objects.

However, suppose we denied the functional dependency LOAN-*BANK. That means, intuitively, that
loans can be made by consortiums of banks. The lower maximal object in Fig. 7 is now replaced by two,
BANK-LOAN-AMT, and CUST-AIDDR-LOAN-AMT. If we ask the query above, we get only the banks at
which Jones has accounts, because only the top maximal object connects CUST to BANK now.

Perhaps the reader feels that this answer is satisfactory, because the connection between BANK and
CUST through LOAN is now "weaker" than through ACCT. More likely, the reader feels that the zonnection
through LOAN is still just ad valid as that through ACCT. Intuitively, the reader probably has in his mind
the model in which each bank in a consortium has made the loan to each borrower of that loan. If that is
the case, then there is an embedded multivalued dependency LOAN--*BANK I CUST. It turns out that the
practical effect or this multivalued dependency can be achieved by declaring the lower maximal object of Fig.
7 to hold, even though it won't follow from the given functional dependencies or from the join dependency
on the objects. 0
V. The System/U Query Language

We shall now sketch the ideas behind the query language and its implementation. The language itself is
escntally QUEL IS', with the following important difference. Since all tuple variables range over the
universal relation, there is no need for a range statement or declaration of tuple variables. Furthermore, an
I As a result, maximal objects may toot be acyclic. They will always have a losless join, however.
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Fig. 8. Courses example.

attribute -A by itself is deemed to stand for b.A, where b is the '.nk tuple variable, a tuple variable that
never appears but is inserted when we translate queries. In the vast majority of queries, all one needs is the
blank tuple variable, but we provide others so you can find out about employees that make more than their
managers and other important information by queries like

retrieve(EMP)
where MGR=t.EMP and SAL>t.SAL

The translation process we use for queries is
1. For each tuple variable, including the "blank" tuple variable that we associate with attributes standing

alone, assign a copy of the universal relation. Begin by taking the Cartesian product or all these copies
of the universal relation.

2. Apply to the Cartesian product the selections implied by the where-clause, and the projection implied
by the list of attributes in the retrieve-clause.

3. Substitute for the copy of the universal relation associated with tuple variable t (which may be the
blank tuple variable) the union of all those maximal objects that include all the attributes A such that
t.A appears in the query.

4. Substitute for each maximal object the natural join of all the objects in that maximal object.
5. Replace each object by an expression involving the actual relations in the database. Recall that each

object is the projection (perhaps with renaming of attributes) of a relation in the database.
6. The resulting expression is optimized by tableau optimization techniques [ASUI, ASU2, SY]. We both

minimize the number or join terms in each term or the union and minimize the number of union terms.
Each of these minimizations can be done exactly, the first by [ASUI, ASU2], and the second by [SY]. As
we minimize rows of a tableau, we should remember the relation from which each row comes (although
we do not refrain from mapping rows to rows that come from different relations). When the minimal
tableau is reached, we can use this information to reconstruct the optimized join expression. There is
an important special case where, although the minimal tableau is unique, as it must be, we can obtain
it by eliminating one of several rows in favor of another. In that case, we must take the union o all the
join expressions that correspond to versions of the minimum tableau with rows and relations identified
in any possible way.

Example 8: Consider the database of Fig. 8, where the objects are CT, CHR, and CSG, and let the relations
in the actual database be CMIIR and CSG; note that the first of these happens not to be normalized. This
database is the courses, teachers, hours, rooms, students, and grades example from [U], and the meanings
of the attributes should be obvious. Let the query in question be

retrieve(t.C)
where S='Joncs' and R = t.R

That is, print the courses that sometimes meet in rooms in which some course taken by Jones meets.
In step (1), we begin by using CIT 1HIRISIG as the copy of the universal relation corresponding to tile

blank tuple variable, and the same set of attributes subscripted by 2 for the copy of the universal relation
for the tuple variable f. For step (2), only C2 is mentioned in the retrieve-clause, and the selection condition
is that S1='Jones, and that R, = R2. Thus, the algebraic expression constructed at step (2) is

WC,(Os,.o J...,^'A .R,(CTJ 11 RS 1G1 X C2T2HRSX2C))

where r stands for projection and a tor selection.
The database of Fig. 8 being acyclic, the only maximal object is the entire database [MU1]. As both t
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Fig. 9. Tableau for constructed expression.

and the blank tuple variable are surely associated only with attributes that are in this one maximal object,
the union at step (3) is simply this one maximal object in each case. In step (4) we substitute

C_ T, > CHR,1 >< Cj SC,

for CITIH 1RISICI, and make a similar substitution for C2T2H2R2S2GC in the above expression. Then, in
step (5), w. replace C1 T, by wcT(CITIHRi) and C1H, R, by wcIHIR,(CITIHIRI) and then do the same
for the objects involving C2,. .. ,C2. Figure 9 shows the tableau for the resulting expression.

In Fig. 9 we have shown the distinguished symbol by a,, the constant 'Jones' by c, and some of the
nondistingaished symbols by subscripted b's. All blank positions represent nondistinguished symbols that
appear nowhere else. The optimization of Fig. 9 takes place by a straightforward application of the method of
[ASUI, AS-J2]. However, in System/U we make several simplifications that seem not to cause optimization
to be misst.d very frequently, and leads to considerable efficiency. First, we treat every variable that is
constrainec in the where-clause as if it were a constant in the sense of IASUI, ASU2]. These symbols
effectively prevent their rows from being mapped to others in a tableau reduction. In Fig. 9, we used the
constant c to enforce the constraint S-'Jones' and we represent the constraint R = t.R by the fact that
b4 appears in two different columns; the result is that the rows containing b4 cannot be mapped to any
other row, making b4 in effect a constant. The algorithm of [KI] to minimize tableaux in the presence of
arithmetic constraints could be used to improve our potential for optimization, although it is not clear how
much beneft would be obtained in practice.

A second simplification we make is to assume that the maximal objects arc acyclic (although in pathologi-
cal cases, functional dependencies could produce cyclic ones), and reduce the tableau by the simple process
of testing whether some one row can map to another by the process of symbol renaming as in [ASU11.

For example, in Fig. 9, the first row maps to the second if we rename b2 to the blank in the T, column
of the second row. Similarly, rows 4 and 6 map to 5. We cannot map row 3 to row 2 because c, being
a constant, cannot map to the symbol represented by the blank in the S, column of row 2. Also, rows 2
and 5 cannct map to any row, because b4 would have to become two different symbols simultaneously. The
optimized tableau will retain onl. the second, third and fifth rows of Fig. 9 (plus the summary row with a,
alone).

The remaining rows, 2, 3, and 5, come from relations CTHR, CSG, and CTHR, respectively. If we
use the optimization strategy of [WY], say, to select an order for operations, the optimized query would be
answered by a sequence of steps in which
1. we select from CSG those* tuples with S='Jones', and save the set of C-values from those tuples, say

C,
2. then select from CTHR those tuples with C-component in C and produce from them the set R of their

R-values, and finally
3. select from CTHR the C-components of tuples with R-components in R.

Example 9: The rule in step (6) for handling join terms that could come from several relations is a response
to the fact that the Pure UR assumption will not in general be satisfied. For example, suppose we have
relations ABC, BCD, and BE, and our query asks about B and E. After optimization, we eliminate either
the row for ABC or the row for BCD, but not both. -

One term in the join to be taken in the optimized query is BE, since this relation's row cannot be
eliminated. The other term could come from either the row for ABC or Ule row for BCD. We therefore
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construct the expression (ABC U BCD) t:< BE, to which the selection and then projection onto BE is
performed. Since only B and E are involved in either selection or projection, this expression can be replaced
by one of the form 7rBE(o((lrB(ABC) U wB(BCD)) > BE)). In effect, the set of B-values to be joined with
BE is the union of what appears in the ABC and BCD relations. If we believed the Pure UR assumption,
the set of B-values in the two relations would have to be the same, but we don't, and it isn't. 0

Example 10: Let us consider an example where thie universal relation must be composed of the union of
several maximal objects because the underlying structure is cyclic. The banking example of Fig. 7 will serve
nicely. Consider the query

"retrieve(Bank)
where Cust='Jones'

There is only one tuple variable, the blank, so in step (1) we create a single copy of the universal relation.
In step (2) we apply to this relation the operators WBDnkCust @.Jones.. In step (3), we see that both maximal
objects in Fig. 7 include the attributes Bank and Cust mentioned by the query. Thus the query becomes

wBnkoCu.t..j*n.e.(Bank Acct Bal Cust Addr U Bank Loan Amt Cust Addr)

Each of these maximal objects is replaced by the join of their objects in step (4). On the assumption that
each of the objects in Fig. 7 is also a relation, step (5) has no effect. At step (6) we break the expression
into the union of two tableaux and minimize them in the obvious ways, deleting "ears" that do not serve to
connect Bank with Cust. The expression becomes

7r
5
Bnk, Cucts=.j.ne,.(Bank-Acct 1 Acct-Cust) U wD 5kOCu.tn=.J.i*D(Bank-Loan D< Loan-Cust)

We then check whether either term of the union is a subset of the other, but that is not the case here, and
the resulting expression'is the one produced by Systm/U. 0

VI. Motivation Behind the Query Interpretation Algorithm

While many other interpretations of queries are possible, we feel that there are sound arguments in favor
of the six-step algorithm proposed in the previous section. The first two steps, construction of a Cartesian
product of universal relations and application of selection and projection are analogous to the way QUEL
handles queries [WYI.

Step (3), the replacement of the universal relation by the union of the maximal objects that are relevant
to the query is a matter for judgement. As mentioned previously, the idea that the union of possible
connections is what we want has been expressed by several authors. For example, the extension join method
for interpreting queries [Sa2] when the only dependencies are functional ones based on a key within one
object (key dependencies) takes a union of connections to interpret queries.J Step (4), the replacement of
the maximal object by the natural join of its member objects, follows from the fact that the construction of
maximal objects we use guarantees the lossless join property for this decomposition of the maximal object
[Mull.

Step (5) is mandatory, since we must ultimately talk about relations, not objects. Finally, the optimiza-
tion in step (6) is guaranteed not to change the result of the query except as dangling tuples are concerned.
As we argued previously, there is good reason to think that a missing tuple in a relation that isn't on any
path connecting the attributes'mentioned by the query should not cause tuples to be deleted from the answer.
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relevant attributes, (Sa21 would compute two extension joins, one from BCD alone and the other from AD and AC. However,
taking the usual construction of maximal objects, we would get the one, cyclic, maxinal object cons;sting or all three relations,
by starting with the object AD. The reader may judge If the connection between B and C through A should be considered on
a par with the connection in the single relation DCD. There seem to be arguments on both sides.
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